Welding Inspection
Defects/Repairs
Course Reference WIS 5
Defects which may be detected by visual inspection can be grouped under the following headings:

- Cracks
- Solid inclusions
- Surface and profiles
- Misalignment (set-up irregularities)
- Gas pores and porosity
- Lack of fusion
- Mechanical damage
- Parent material damage
- Miscellaneous
Cracks
Cracks

Cracks that may occur in welded materials are caused generally by many factors and may be classified by shape and position, cracks are classed as planar.

<table>
<thead>
<tr>
<th>Classified by Shape</th>
<th>Classified by Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>HAZ</td>
</tr>
<tr>
<td>Transverse</td>
<td>Centreline</td>
</tr>
<tr>
<td>Branched</td>
<td>Crater</td>
</tr>
<tr>
<td>Chevron</td>
<td>Fusion zone</td>
</tr>
<tr>
<td></td>
<td>Parent metal</td>
</tr>
</tbody>
</table>
Process Cracks

- Hydrogen induced cold cracking (HICC)
- Solidification cracking (Hot Tearing)
- Lamellar tearing
- Reheat cracking
Cracks

- Longitudinal parent metal crack
- Transverse weld metal crack
- Longitudinal weld metal crack
- Lamellar tearing

Section Ref. 3
Transverse crack

Longitudinal crack
Inclusions
Gas Cavities

Gas pore <1.5mm Blow hole.>1.5mm

- Loss of gas shield
- Damp electrodes
- Contamination
- Arc length too large
- Damaged electrode flux
- Moisture on parent material
- Welding current too low
Cluster porosity

Herring bone porosity
Solid Inclusions

Slag inclusions are defined as a non-metallic inclusion caused by some welding process

- Slag originates from welding flux
- MAG and TIG welding process produce silica inclusions
- Slag is caused by inadequate cleaning
- Other inclusions include tungsten and copper inclusions from the TIG and MAG welding process
Interpass slag inclusions
Elongated slag lines
Lack of Fusion
Surface and profile Defects

- Incomplete filled groove
- Lack of sidewall fusion

1. Lack of sidewall fusion
2. Lack of inter-run fusion

- Poor welder skill
- Incorrect electrode manipulation
- Arc blow
- Incorrect welding current/voltage
- Incorrect travel speed
- Incorrect inter-run cleaning
Overlap

An imperfection at the toe or root of a weld caused by metal flowing on to the surface of the parent metal without fusing to it

- Contamination
- Slow travel speed
- Incorrect welding technique
- Current too low
Overlap.

- Toe Overlap
- Butt weld
- Toe Overlap
- Fillet weld
Root Defects

- Incomplete root fusion
- Incomplete root penetration

- Low Amps/volts
- Large Root face
- Small Root Gap
- Fast Travel Speed
- Incorrect Electrode Angle
- Contamination
- Arc blow
Root Defects

- Lack of root fusion
- Lack of root Penetration
Lack of root penetration

Lack of root fusion
Surface and Profile
Poor cap profiles and excessive cap reinforcements may lead to stress concentration points at the weld toes and will also contribute to overall poor toe blend.

- Incomplete filled groove
- Poor cap profile
- Excessive cap height
Excess cap reinforcement

Incomplete filled groove

Section Ref. 3
Profile Defects

Poor stop/starts
Miscellaneous Defects.

- Excessive current
- Damp electrodes
- Contamination
- Incorrect wire feed speed when welding with the MAG welding process
- Arc blow

Spatter
Miscellaneous Defects

- Accidental striking of the arc onto the parent material
- Faulty electrode holder
- Poor cable insulation
- Poor return lead clamping

Arc strike
An irregular groove at the toe of a weld run in the parent metal

- Excessive amps/volts
- Excessive travel speed
- Incorrect electrode angle
- Excessive weaving
- Incorrect welding technique
- Electrode too large
Cap. Undercut.

Measured in both Length & Depth
Root undercut

Cap undercut
Shrinkage Groove

A shallow groove caused by contraction in the weld metal along each side of the penetration bead

- Insufficient weld metal deposited in the root pass
- Too fast a cooling rate during the application of the root bead pass
- Poor welding technique
Concave Root

A shallow groove, which may occur in the root of a butt weld

- Root faces too large
- Root gap too large
- Excessive back purge pressure during TIG welding
- Excessive root bead grinding before the application of the second pass

Concave root
Suck back/concave root
Excessive Root Penetration

Root penetration bead in excess in accordance with the relevant specification being used

- Root faces too small
- Root gap too large
- Excessive amps/volts
- Slow travel speed
Excessive Root Penetration

Excessive root penetration
Concave root

Excessive root penetration

Section 3

Ref. 3
Burn Through

A localized collapse of the weld pool due to excessive penetration resulting in a hole in the root run

- High Amps/volts
- Small Root face
- Large Root Gap
- Slow Travel Speed
Burn Through

Burn Through

Burn through
Root Coking~Oxidized Root

- Loss or insufficient back purging gas
- Most commonly occurs when welding stainless steels
- Purging gases include argon, helium and occasionally nitrogen
Crater pipe is a shrinkage defect and not a gas defect, it has the appearance of a gas pore in the weld crater.

- Too fast a cooling rate
- Deoxidization reactions and liquid to solid volume change
- Contamination
Mechanical Damage
Mechanical damage can be defined as any surface material damage caused during the manufacturing process. This can include damage caused by:

- Grinding
- Hammering
- Chiselling
- Chipping
- Breaking off welded attachments (torn surfaces)
- Using needle guns to compress weld capping runs
Irregularities
Unequal Leg Lengths

A variation of leg lengths on a fillet weld

Note: Unequal leg lengths on a fillet weld may be specified as part of the design, in which case it will not be considered as a defect.
Set-up Irregularities

Plate/pipe Linear Misalignment (Hi-Lo)

Linear misalignment is measured from the lowest plate to the highest point of the cap.

Angular Misalignment

Angular misalignment is measured in degrees.
Any Questions?
Questions

QU 1. Give two main causes for the occurrence of a burn through

QU 2. Give two main causes for the occurrence of excessive root penetration on a single-V butt weld

QU 3. Give five defects, which may occur when welding carbon steel using the MMA welding process with the current setting to low

QU 4. Give three possible causes for the occurrence of lack of side wall fusion

QU 5. Sketch the following defects
 a. Lack of root wall fusion b. Lack of root penetration
 c. Incomplete filled groove d. Concave root
Materials Inspection
Material Inspection

All materials arriving on site should be inspected for:

- Size / dimensions
- Condition
- Type / specification

In addition other elements may need to be considered depending on the materials form or shape.
Parent material defects include:

- **Laminations** are caused in the parent plate by the steel making process, originating from ingot casting defects.
- **Segregation bands** occur in the centre of the plate and are low melting point impurities such as sulphur and phosphorous.
- **Laps** are caused during rolling when overlapping metal does not fuse to the base material.
Plate Lamination
Weld Repairs
Welding Repairs

In the event of repair

- Authorization for repair
- Removal and preparation for repair
- Testing of repair - visual and NDT
A weld repair may be used to improve weld profiles or extensive metal removal.

Repairs to fabrication defects are generally easier than repairs to service failures because the repair procedure may be followed.

The main problem with repairing a weld is the maintenance of mechanical properties.

During the inspection of the removed area prior to welding, the inspector must ensure that the defects have been totally removed and the original joint profile has been maintained as close as possible.
The specification or procedure will govern how the defective areas are to be removed. The method of removal may be:

- Grinding
- Chipping
- Machining
- Filing
- Oxy-Gas gouging
- Arc air gouging
Any Questions?
Questions

QU 1. State six points of importance of repair welding.

QU 2. State two NDT methods that may be applied to a repair in a weld.

QU 3. State three documents, which the inspector should refer to when carrying out repairs.

QU 4. In some cases why might a specification not allow a crack to be repaired, regardless of size and orientation?